ChemicalBook > CAS DataBase List > Boron trifluoride

Boron trifluoride

Product Name:
Boron trifluoride
CAS No.
7637-07-2
Chemical Name:
Boron trifluoride
CBNumber:
CB3238105
Molecular Formula:
BF3
Formula Weight:
67.81
MOL File:
7637-07-2.mol
More
Less

Boron trifluoride Property

Melting point:
−127 °C(lit.)
Boiling point:
−100 °C(lit.)
Density 
0.87 g/mL at 20 °C
vapor density 
2.38 (21 °C, vs air)
vapor pressure 
>1 mmHg at 20 °C
refractive index 
n20/D 1.38
Flash point:
4°C
storage temp. 
2-8°C
form 
Liquid
color 
Colorless
Odor
Pungent odor detectable at 1.5 ppm
Water Solubility 
MAY DECOMPOSE
Sensitive 
Moisture Sensitive
Merck 
14,1349
CAS DataBase Reference
7637-07-2(CAS DataBase Reference)
NIST Chemistry Reference
Borane, trifluoro-(7637-07-2)
EPA Substance Registry System
Boron trifluoride (7637-07-2)
More
Less

Safety

Hazard Codes 
T+,C,T,F
Risk Statements 
14-26-35-39/23/24/25-24/25-11-67-41-10-37-22
Safety Statements 
9-26-28-36/37/39-45-28A-16
RIDADR 
UN 3286 3/PG 2
WGK Germany 
3
RTECS 
ED2275000
21
Hazard Note 
Corrosive/Toxic
TSCA 
Yes
HazardClass 
2.3
Hazardous Substances Data
7637-07-2(Hazardous Substances Data)
Toxicity
LC50 inhal (rat) 387 ppm (1070 mg/m3; 1 h)
PEL (OSHA) 1 ppm (3 mg/m3; ceiling)
TLV (ACGIH) 1 ppm (3 mg/m3; ceiling)
More
Less

N-Bromosuccinimide Price More Price(1)

Alfa Aesar Gold
Product number:
022874
Product name :
Boron trifluoride
Purity:
99+%
Packaging:
100g
Price:
$881
Updated:
2020/06/24
Buy:
Buy
More
Less

Boron trifluoride Chemical Properties,Usage,Production

Description

Boron trifluoride is the inorganic compound with the formula BF3. It is a highly toxic, colorless and nonflammable gas with a penetrating and pungent odor. It dissolves quickly in water and any organic compounds containing nitrogen or oxygen. It can be slowly hydrolyzed by cold water to give off hydrofluoric acid, and can also hydrolyzes to form white dense fumes in moist air. Its vapors are heavier than air. Inhaling the gas will irritate the respiratory system and burns can result if the gas touches the skin in high concentrations.

boron trifluoride lewis structure
Boron trifluoride is most importantly used as a reagent, typically as a Lewis acid, to catalyze such diverse operations as isomerization, alkylation, polymerization, esterfication, condensation, cyclization, hydration dehydration, sulfonation, desulfurization nitration, halogenation oxidation and acylation. Besides, it can also be used as a versatile building block for other boron compounds.

References

1. https://en.wikipedia.org/wiki/Boron_trifluoride
2. https://cameochemicals.noaa.gov/chemical/255
3. http://www.c-f-c.com/specgas_products/boron-trifluoride.htm
4.https://www.praxairdirect.com/Specialty-Gas-Information-Center/Pure-Gas-Specifications/Boron-Trifluoride.html

Description

Dry boron trifluoride is used with mild steel, copper, copper–zinc and copper–silicon alloys, and nickel. Moist gas is corrosive to most metallic materials and some plastics. Therefore, Kel-F? and Teflon? are the preferred gasketing materials. Mercury-containing manometers should not be used since boron trifluoride is soluble in mercury. It decomposes in hot water, yielding hydrogen fluoride. Boron trifluoride is widely used as a catalyst for organic synthesis reactions.

Chemical Properties

Boron trifluoride is a nonflammable, colorless gas with an acrid suffocating odor. It forms thick acidic fumes in moist air. Dry boron trifluoride is used with mild steel, copper, copper-zinc and copper-silicon alloys, and nickel. Moist gas is corrosive to most metallic materials and some plastics. Therefore, Kel-F and Teflon are the preferred gasketing materials. Mercury containing manometers should not be used because boron trifluoride is soluble in mercury. It decomposes in hot water yielding hydrogen fluoride, Shipped as a nonliquefied compressed gas.

Physical properties

Colorless gas; pungent suffocating odor; density 2.975 g/L; fumes in moist air; liquefies at -101°C; solidifies at -126.8°; vapor pressure at -128°C is 57.8 torr; critical temperature -12.2°C; critical pressure 49.15 atm; critical volume 115 cm3/mol; soluble in water with partial hydrolysis; solubility in water at 0°C 332 g/100g; also soluble in benzene, toluene, hexane, chloroform and methylene chloride; soluble in anhydrous concentrated sulfuric acid.

Uses

To protect molten magnesium and its alloys from oxidation; as a flux for soldering magnesium; as a fumigant; in ionization chambers for the detection of weak neutrons. By far the largest application of boron trifluoride is in catalysis with and without promoting agents.

Preparation

Boron trifluoride is prepared by treating borax with hydrofluoric acid; or boric acid with ammonium bifluoride. The complex intermediate product is then treated with cold fuming sulfuric acid.

General Description

Boron trifluoride is a colorless gas with a pungent odor. Boron trifluoride is toxic by inhalation. Boron trifluoride is soluble in water and slowly hydrolyzed by cold water to give off hydrofluoric acid, a corrosive material. Its vapors are heavier than air. Prolonged exposure of the containers to fire or heat may result in their violent rupturing and rocketing.

Air & Water Reactions

Fumes in air. Soluble in water and slowly hydrolyzed by cold water to give hydrofluoric acid. Reacts more rapidly with hot water.

Reactivity Profile

Boron trifluoride is a colorless, strongly irritating, toxic gas. Upon contact with water, steam or when heated to decomposition, Boron trifluoride will produce toxic fluoride fumes. Incompatible with alkyl nitrates, calcium oxide. Reaction with alkali metals or alkaline earth metals (except magnesium) will cause incandescence [Bretherick, 5th ed., 1995, p. 65].

Hazard

Toxic by inhalation, corrosive to skin and tissue. Lower respiratory tract irritant, and pneu- monitis.

Health Hazard

Boron trifluoride (and organic complexes such as BF3-etherate) are extremel corrosive substances that are destructive to all tissues of the body. Upon contact with moisture in the skin and other tissues, these compounds react to form hydrofluoric acid and fluoroboric acid, which cause severe burns. Boron trifluoride gas is extremely irritating to the skin, eyes, and mucous membranes. Inhalation of boron trifluoride can cause severe irritation and burning of the respiratory tract, difficult breathing, and possibly respiratory failure and death. Exposure of the eyes to BF can cause severe burns and blindness. This compound is not considered to have adequate warning properties. Boron trifluoride has not been found to be carcinogenic or to show reproductive or developmental toxicity in humans. Chronic exposure to boron trifluoride gas can cause respiratory irritation and damage.

Fire Hazard

When heated to decomposition or upon contact with water or steam, Boron trifluoride will produce toxic and corrosive fumes of fluorine containing compounds. Decomposes upon heating or on contact with moist air, forming toxic and corrosive fumes of boric acid and hydrofluoric acid. Reacts with alkalis and fumes in moist air, producing particulates which reduce visibility. Reacts with alkali metals, alkaline earth metals (except magnesium), alkyl nitrates, and calcium oxide. Boron trifluoride hydrolyzes in moist air to form boric acid, hydrofluoric acid, and fluoboric acid.

Flammability and Explosibility

Boron trifluoride gas is noncombustible. Water should not be used to extinguish any fire in which boron trifluoride is present. Dry chemical powder should be used for fires involving organic complexes of boron trifluoride.

Potential Exposure

Boron trifluoride is a highly reactive chemical used primarily as a catalyst in chemical synthesis. It is stored and transported as a gas, but can be reacted with a variety of materials to form both liquid and solid compounds. The magnesium industry utilizes the fireretardant and antioxidant properties of boron trifluoride in casing and heat treating. Nuclear applications of boron trifluoride include neutron detector instruments; boron-10 enrichment and the production of neutroabsorbing salts for molten-salt breeder reactors.

storage

All work with boron trifluoride should be conducted in a fume hood to prevent exposure by inhalation, and splash goggles and impermeable gloves should be worn to prevent eye and skin contact. Cylinders of boron trifluoride should be stored in locations appropriate for compressed gas storage and separated from alkali metals, alkaline earth metals, and other incompatible substances. Solutions of boron trifluoride should be stored in tightly sealed containers under an inert atmosphere in secondary containers.

Shipping

UN1008 Boron trifluoride, Hazard class: 2.3; Labels: 2.3—Poisonous gas, 8—Corrosive material, Inhalation Hazard Zone B. Cylinders must be transported in a secure upright position, in a well-ventilated truck. Protect cylinder and labels from physical damage. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner.

Purification Methods

The usual impurities-bromine, BF5, HF and non-volatile fluorides-are readily separated by distillation. Brown and Johannesen [J Am Chem Soc 72 2934 1950] passed BF3 into benzonitrile at 0o until the latter was saturated. Evacuation to 10-5mm then removed all traces of SiF4 and other gaseous impurities. [A small amount of the BF3-benzonitrile addition compound sublimes and is collected in a U-tube cooled to -80o]. The pressure is raised to 20mm by admitting dry air, and the flask containing the BF3 addition compound is warmed with hot water. The BF3 that evolves is passed through a -80o trap (to condense any benzonitrile) into a tube cooled in liquid air. The addition compound with anisole can also be used. BF3 can be dried by passing it through H2SO4 saturated with boric oxide. It fumes in moist air. [It is commercially available as a 1.3M solution in MeOH or PrOH.] [Booth & Wilson Inorg Synth I 21 1939, Kwasnik in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I pp 219-222 1963.] TOXIC.

Incompatibilities

Boron trifluoride reacts with polymerized unsaturated compounds. Decomposes on contact with water, moist air, and other forms of moisture, forming toxic and corrosive hydrogen fluoride, fluoroboric acid, and boric acid. Reacts violently with alkali and alkaline earth metals (except magnesium); metals, such as sodium, potassium, and calcium oxide, and with alkyl nitrates. Attacks many metals in presence of water.

Waste Disposal

Return refillable compressed gas cylinders to supplier. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. Chemical reaction with water to form boric acid, and fluoroboric acid. The fluoroboric acid is reacted with limestone, forming boric acid and calcium fluoride. The boric acid may be discharged into a sanitary sewer system while the calcium fluoride may be recovered or landfilled. Protect cylinder and labels from physical damage.

Precautions

Exposures to boron trifl uoride in occupational work areas cause irritating effects, painful burns, lesions, and loss of vision. Workers with potential exposure to boron trifl uoride should not wear contact lenses. Prompt medical attention is mandatory in all cases of overexposure to boron trifl uoride and the rescue personnel should be equipped with proper protectives. Occupational workers should handle/use boron trifl uoride only in well-ventilated areas. The valve protection caps must remain in place. Workers should not drag, slide, or roll the cylinders, and use a suitable hand truck for cylinder movement. Compressed gas cylinders shall not be refi lled without the express written permission of the owner. Boron trifl uoride is listed as an extremely hazardous substance (EHS). The cylinder should not be heated by any means to increase the discharge rate of the product from the cylinder. The cylinder of boron trifl uoride should be kept stored in a cool, dry, well-ventilated area of non-combustible construction away from heavily traffi cked areas and emergency exits

Boron trifluoride Preparation Products And Raw materials Raw materials

Raw materials

Preparation Products

Less

Boron trifluoride Suppliers

Global(0)Suppliers

7637-07-2, Boron trifluorideRelated Search:

DOYLE DIRHODIUM CATALYST-RH2(4S-MEOX)4 Nitrogen trifluoride Boron trifluoride ethyl methyletherate Tung oil, polymer with boron trifluoride-phenol complex, formaldehyde, phenol, -pinene and turpentine oil Boron Trifluoride - Butanol Reagent (10-20%) [for Esterification] (1ml*10) benzenemethanamine, compd. with trifluoroborane,benzylamine, compd. with boron fluoride Boron trifluoride methanol complex Potassium boron fluoride Boron trifluoride/1-butanol,(1:x) Boron trifluoride-acetic acid complex Boron trifluoride methyl sulfide complex Trifluoroborane,compd. with monomethylamine BORON TRIFLUORIDE 1.3M IN METHANOL,Boron Trifluoride Methanol Complex, 10-15%,Boron trifluoride/methanol,(1:x),bis(methanol)--trifluoroborane,BORON FLUORIDE-METHANOL Boron trifluoride Boron trifluoride acetonitrile complex Boron Trifluoride - Methanol Reagent (10-20%) [for Esterification] (1ml*10),BORON FLUORIDE-METHANOL Boron trifluoride etherate Boron nitride
  • BORON TRIFLUORIDE, 99.99+%, ELECTRONIC G RADE
  • BORON TRIFLUORIDE (~10% (~1.3 M) IN 1-BUTANOL)
  • BORON TRIFLUORIDE CYL. WITH 2 L (NET ~1. 2 KG)
  • BORON TRIFLUORIDE CYL.WITH 5 L (NET~3KG)
  • Boron Trifluoride Anhydrous
  • BoronTrifuoride
  • bf3-butanol solution
  • boron trifluoride - butanol reagent
  • bortrifluoride -1-butanol solution
  • Borontrifluoride99%
  • Bortrifluorid
  • BORON TRIFLUORIDE, 99.5+%
  • Boron trifluoride, 12% solution in methanol
  • trifluoro-boran
  • Trifluoroborane
  • trifluoro-Borane
  • Trifluoroboron
  • boron trifluoride for electonic industry
  • Boron fluoride, Electronic Grade, 99.99+%
  • Bortrifluoride - 1-butanol solution,BF3 - Butanol solution
  • Boron Trifluoride, 2,2,2-Trifluoroethanol Reagent 15 [for Esterification] (1mlX10)
  • Boron Trifluoride, 10-15% in Methanol
  • BORON TRIFLUORIDE 10-15%
  • BORON FLUORIDE
  • BORON TRIFLUORIDE GAS
  • BORON TRIFLUORIDE
  • anca1040
  • BF3
  • Borane,trifluoro-
  • Boron fluoride (BF3)
  • boronfluoride(bf3)
  • Fluorure de bore
  • fluoruredebore
  • fluoruredebore(french)
  • Leecure b series
  • Boron trifluoride - 1-butanol solution
  • 7637-07-2
  • 7637/7/2
  • Alkylation
  • Compressed and Liquefied Gases
  • Synthetic Reagents
  • metal halide
  • Pharmaceutical Intermediates
  • Inorganics
  • Furan&Benzofuran
  • Compressed and Liquefied GasesMicro/Nanoelectronics
  • Electronic Chemicals
  • Fluorides
  • Compressed and Liquefied GasesVapor Deposition Precursors
  • Gases
  • Precursors by Metal
  • BoronChemical Synthesis
  • Compressed and Liquefied Gases
  • BoronSynthetic Reagents
  • Catalysis and Inorganic Chemistry
  • Chemical Synthesis
  • Lewis Acids
  • Synthetic Reagents
Description References