ChemicalBook >  Product Catalog >  API >  Vitamins and Minerals medicines >  Vitamin B drugs >  Nicotinic acid

Nicotinic acid

Basic information Chemical Properties Uses Preparation Identifying tests Content analysis Toxicity Safety Related Supplier

Nicotinic acid Basic information

Product Name:
Nicotinic acid
CAS:
59-67-6
MF:
C6H5NO2
MW:
123.11
EINECS:
200-441-0
Mol File:
59-67-6.mol
More
Less

Nicotinic acid Chemical Properties

Melting point:
236-239 °C(lit.)
Boiling point:
260C
Density 
1.473
refractive index 
1.5423 (estimate)
Flash point:
193°C
storage temp. 
0-6°C
solubility 
18g/l
pka
4.85(at 25℃)
form 
Powder
color 
White to off-white
PH
2.7 (18g/l, H2O, 20℃)
Water Solubility 
1-5 g/100 mL at 17 ºC
Merck 
14,6525
BRN 
109591
Stability:
Stable. Incompatible with strong oxidizing agents. May be light sensitive.
InChIKey
PVNIIMVLHYAWGP-UHFFFAOYSA-N
CAS DataBase Reference
59-67-6(CAS DataBase Reference)
NIST Chemistry Reference
Niacin(59-67-6)
EPA Substance Registry System
Nicotinic acid (59-67-6)
More
Less

Safety Information

Hazard Codes 
Xi,T,F
Risk Statements 
36/37/38-36-39/23/24/25-23/24/25-11
Safety Statements 
26-36-24/25-45-36/37-16-7
RIDADR 
UN1230 - class 3 - PG 2 - Methanol, solution
WGK Germany 
1
RTECS 
QT0525000
8
Autoignition Temperature
>365 °C Dust
TSCA 
Yes
HS Code 
29362990
Hazardous Substances Data
59-67-6(Hazardous Substances Data)
Toxicity
LD50 s.c. in rats: 5 g/kg (Brazda, Coulson)

MSDS

More
Less

Nicotinic acid Usage And Synthesis

Chemical Properties

White crystal or crystalline powder, odorless or has a slight odor, slight sour taste. Melting point is 234-237℃. Easily soluble in hot water, hot ethanol, alkaline water, propylene glycol, and chloroform. Slightly soluble in water and ethanol; 100ml room temperature water can dissolve 1.6g. Insoluble in ether and ester solutions. The PH of 1% aqueous solution is 3.0-4.0. Stable in heat, acidity and alkalinity.

Uses

  • This product is a type of vitamin supplement, and it is called vitamin PP along with nicotinamide. It is used to treat pellagra and as a vasodilator, and it is widely used as an additive for food and feed.
  • A medicine intermediate, used in the production of isoniazid, nicotinamide, nikethamide, inositol nicotinate, etc.
  • Nicotinic acid is an important factor in delivering hydrogen and fighting pellagra in organisms; it helps maintain skin and nerve health and stimulate digestion.
  • Coenzyme and cofactor; pyridine nucleotide coenzyme; decreases the amount of low density lipoproteins in the liver and slows the fibrosis of apolipoproteins.
  • Biochemistry research, a nutritional component of tissue culture mediums.

Preparation

Nicotinic acid exists naturally in grain germs, meats and peanuts. It can also be synthesized artificially through the liquid phase method (potassium permanganate oxidation and nitric acid oxidation) and gas phase method (ozone oxidation, ammonia oxidation and air oxidation).

  • 3-methyl pyridine method
In the gas phase ammonia oxidation process, add 3-methyl pyridine, air and ammonia into the fluidized bed reactor and catalyze the reaction at 290~360℃,V2O5 to produce nicotinonitrile; then hydrolyze in sodium hydroxide aqueous solution at 160℃ to produce sodium nicotinate; finally, add hydrochloric acid to acidify, creating nicotinic acid. In the potassium permanganate oxidation method, add potassium permanganate gradually at 80℃ to a mixture of 3-methyl pyridine and water, and then continue to mix for 30min at 85~90℃. Distill to collect and reuse the unreacted 3-methyl pyridine and filter away the produced manganese dioxide. Adjust the PH of the resulting nicotinic acid solution to 3.8~4.0 using hydrochloric acid, cool to 30℃ crystals, and filter to obtain crude nicotinic acid. Dissolve the crude nicotinic acid in hot water, add activated charcoal to eliminate the color, filter, cool, and obtain the crystalline end product. Yield is approximately 86%.
  • 6- hydroxyquinoline method
Add sulfuric acid and quinoline into a reaction kettle and mix while maintaining heat at 150~160℃ for 5h. Then with the temperature maintained at 180~220℃, slowly drop in nitric acid and the sulfuric acid mixture over the course of 36~40h. While maintaining the temperature, mix for 2~3h to obtain a nicotinic acid solution and add water to dilute the solution. Use 30%~33% NaOH solution to neutralize the PH to 8~9. Cool and filter away the sodium sulfate and sodium nitrate crystals, add copper sulfate solution to the filtered liquid, and mix and heat to yield copper nicotinate precipitation. Cool, filter and add the copper nicotinate to an adequate amount of water, drop in NaOH solution until PH>9 and the liquid is no longer blue, and filter away the produced cupric oxide. Add a small amount of sodium sulfide solution to remove traces of copper and iron until the solution no longer produces black precipitate, and then filter. Use hydrochloric acid to adjust the PH of the filtered liquid to 3.5~3.9, filter to yield crystals as crude nicotinic acid. Dissolve the crude product in 12 times the amount of distilled water, add activated charcoal to eliminate the color, filter, cool, and obtain the crystalline end product. Yield is 35%~39%.
  • 2-methyl-5-ethyl pyridine method
With 2-methyl-5-ethyl pyridine as the raw ingredient, oxidize with nitic acid under high pressure and high temperatures, then decarboxylate to yield nicotinic acid.

Identifying tests

Add 2 portions of 2, 4-Dinitrochlorobenzene to the sample and process into powder. Place 10mg of the powder in a test tube, gently heat until melted, and continue to heat for a couple of seconds. Cool and add 3ml potassium hydroxide ethanol solution (TS-190). The solution should be dark red.
Dissolve 50mg of the sample solution in 20ml water, use 0.1mol/L sodium hydroxide to neutralize until a litmus paper reads neutral, and add 3ml copper sulfate solution (TS-78). Blue precipitate should begin forming slowly.
Dry the sample for 1h at 105℃ and collect its mineral oil dispersions. The peak wavelength of its infrared absorption spectrum should resemble the standard reference sample formulated using the same method.
Prepare an aqueous solution of the sample with a density of 20μg/ml, measure its absorbance at the wavelengths 237nm and 262nm in a 1cm pool, using water as a blank control. A237/A262 should be 0.35~0.39.

Content analysis

Precisely take a sample of 300mg and dissolve in 50ml water. Add a couple drops of phenolphthalein solution (TS-167) and titrate using 0.1mol/L sodium hydroxide. Conduct a control experiment at the same time. Every Ml0.1mol/L sodium hydroxide is equivalent to 12.31mg nicotinic acid (C6H5NO2).

Toxicity

LD50 7.0g/kg (Large mice, oral).
GRAS(FDA,§182.5530,2000)。
ADI has no special regulations (EEC, 1990).

Description

Niacin is an additive to food on the basis of its nutrient supplement qualities as a vitamin (as an enzyme co-factor). This water-soluble vitamin of the B complex occurs in various animal and plant tissues. It is required by the body for the formation of coenzymes NAD and NADP. A deficiency of niacin results in the disease, pellagra.

Chemical Properties

White powder

Uses

Niacin feed grade is used as vitamin for poultry, swines, ruminants, fish, dogs and cats, etc. It is also used as intermediate for nicotinic acid derivatives and technical applications. WWW Link

Uses

Niacin USP is used for food fortification, as dietary supplement and as an intermediate of pharmaceuticals. WWW Link

Uses

Niacin USP granular is used for food fortification, as dietary supplement and as an intermediate of pharmaceuticals. WWW Link

Uses

Niamax(R) is a brand name for a sustained release Niacin tablet, which is used to reduce cholesterol. Contact

Uses

Nicotinic acid. It is a precursor of the coenzymes NAD and NADP. Widely distributed in nature; appreciable amounts are found in liver , fish, yeast and cereal grains. Dietary deficiency is associated with pellagra. The term “niacin” has also been applied

Uses

antihyperlipidemic, vitamin (enzyme cofactor)

Uses

anti-hyperlipoproteinemic

Uses

niacin is also known as vitamin B3. It is a water-soluble conditioning agent that improves rough, dry, or flaky skin, helping smooth the skin and improve its suppleness. niacin enhances the appearance and feel of hair, by increasing body, suppleness, or sheen, or by improving the texture of hair that has been damaged physically or by chemical treatment. When used in the formulation of skin care products, niacinamide and niacin enhance the appearance of dry or damaged skin by reducing flaking and restoring suppleness.

Uses

Niacin is a water-soluble b-complex vitamin that is necessary for the growth and health of tissues. It prevents pellagra. It has a solubility of 1 g in 60 ml of water and is readily soluble in boiling water. It is relatively stable in storage and no loss occurs in ordinary cooking. Sources include liver, peas, and fish. It was originally termed nicotinic acid and also functions as a nutrient and dietary supplement.

Definition

ChEBI: A pyridinemonocarboxylic acid that is pyridine in which the hydrogen at position 3 is replaced by a carboxy group.

brand name

Niacor (Upsher Smith); Niaspan (KOS); Nicolar (Sanofi Aventis); Wampocap (Medpointe).

General Description

Nicotinic acid, 3-pyridinecarboxylicacid (Niacin), is effective in the treatment of all types ofhyperlipoproteinemia except type I, at doses above thosegiven as a vitamin supplement. The drug reduces VLDLsynthesis and, subsequently, its plasma products, IDL andLDL. Plasma triglyceride levels are reduced because of thedecreased VLDL production. Cholesterol levels are lowered,in turn, because of the decreased rate of LDL formationfrom VLDL. Although niacin is the drug of choicefor type II hyperlipoproteinemias, its use is limited becauseof the vasodilating side effects. Flushing occurs inpractically all patients but generally subsides when thedrug is discontinued.
The hypolipidemic effects of niacin may be caused byits ability to inhibit lipolysis (i.e., prevent the release ofFFAs and glycerol from fatty tissues). Therefore, there is areduced reserve of FFA in the liver and diminution oflipoprotein biosynthesis, which reduces the production ofVLDL. The decreased formation of lipoproteins leads to apool of unused cholesterol normally incorporated inVLDL. This excess cholesterol is then excreted throughthe biliary tract.

General Description

Odorless white crystalline powder with a feebly acid taste. pH (saturated aqueous solution) 2.7. pH (1.3% solution) 3-3.5.

Air & Water Reactions

Water soluble.

Reactivity Profile

Nicotinic acid is incompatible with strong oxidizers. Nicotinic acid is also incompatible with sodium nitrite.

Fire Hazard

Flash point data for Nicotinic acid are not available; however, Nicotinic acid is probably combustible.

Mechanism of action

Nicotinic acid decreases formation and secretion of VLDL by the liver.This action appears secondary to its ability to inhibit fatty acid mobilization from adipose tissue. Circulating free fatty acids provide the main source of fatty acids for hepatic triglyceride synthesis, and lowering triglyceride synthesis lowers VLDL formation and secretion by the liver. Since plasma VLDL is the source of LDL, lowering VLDL can ultimately lower LDL. In addition, nicotinic acid shifts LDL particles to larger (more buoyant) sizes. The larger LDL particles are thought to be less atherogenic. Nicotinic acid can also significantly increase plasma HDL levels; the mechanism is unknown.

Clinical Use

Nicotinic acid has been esterified to prolong itshypolipidemic effect. Pentaerythritol tetranicotinate hasbeen more effective experimentally than niacin in reducingcholesterol levels in rabbits. Sorbitol and myo-inositolhexanicotinate polyesters have been used in the treatment ofpatients with atherosclerosis obliterans.The usual maintenance dose of niacin is 3 to 6 g/daygiven in three divided doses. The drug is usually given atmealtimes to reduce the gastric irritation that often accompanieslarge doses.

Side effects

Compliance with nicotinic acid therapy can be poor because the drug can produce an intense cutaneous flush. This can be reduced by beginning the drug in stepped doses of 250 mg twice daily and increasing the dose monthly by 500 to 1000 mg per day to a maximum of 3000 mg per day.Taking nicotinic acid on a full stomach (end of meal) and taking aspirin before dosage can reduce the severity of flushing. Time-release forms of nicotinic acid may also decrease cutaneous flushing. Nicotinic acid can cause gastrointestinal (GI) distress,liver dysfunction (especially at high doses), decreased glucose tolerance, hyperglycemia, and hyperuricemia. Thus, it is contraindicated in patients with hepatic dysfunction, peptic ulcer, hyperuricemia, or diabetes mellitus. A paradox associated with nicotinic acid is that it is the most widely available hypolipidemic drug (it is sold over the counter), yet its use requires the closest management by the physician.

Safety Profile

Poison by intraperitoneal route. Moderately toxic by ingestion, intravenous, and subcutaneous routes. Human systemic effects: change in clotting factors, changes in platelet count. Questionable carcinogen with experimental carcinogenic data. When heated to decomposition it emits toxic fumes of NOx.

Purification Methods

Crystallise the acid from *benzene, EtOH or H2O. It sublimes without decomposition. [McElvain Org Synth Coll Vol I 385 1941, Beilstein 22 III/IV 439, 22/2 V 57.]

More
Less

Nicotinic acidSupplierMore

Wuhan Magic Biological Technology Co., Ltd. Gold
Tel:
18872289958、027-52304252、QQ3400508168
Email:
3400508168@qq.com
Hubei Hengluyuan Technology Co., Ltd. Gold
Tel:
027-88188016-
Email:
1764683941@qq.com;
Shanghai Xinyue Chemical Co., Ltd. Gold
Tel:
Email:
645908973@qq.com
Ningbo Bingxing Chemical Co., Ltd. Gold
Tel:
13738829766
Email:
674305257@qq.com
J & K SCIENTIFIC LTD.
Tel:
010-82848833- ;010-82848833-
Email:
jkinfo@jkchemical.com;market6@jkchemical.com
Basic information Chemical Properties Uses Preparation Identifying tests Content analysis Toxicity Safety Related Supplier