ChemicalBook >  Product Catalog >  API >  Synthetic Anti-infective Drugs >  Antiseptics & Disinfectants Drugs >  Orthoboric acid

Orthoboric acid

Basic information Description References Safety Related Supplier

Orthoboric acid Basic information

Product Name:
Orthoboric acid
CAS:
10043-35-3
MF:
BH3O3
MW:
61.83
EINECS:
233-139-2
Mol File:
10043-35-3.mol
More
Less

Orthoboric acid Chemical Properties

Melting point:
169 °C
Boiling point:
219-220 °C (9.7513 mmHg)
Density 
1.435
vapor pressure 
2.6 mm Hg ( 20 °C)
storage temp. 
Store at RT.
solubility 
H2O: soluble
pka
8.91±0.43(Predicted)
form 
working solution
Specific Gravity
1.435
color 
≤10(APHA)
Odor
Odorless
PH
3.6-4.4 (25℃, saturated solution in H2O)
PH Range
3.8 - 4.8
Water Solubility 
49.5 g/L (20 ºC)
λmax
λ: 260 nm Amax: 0.05
λ: 280 nm Amax: 0.05
Sensitive 
Hygroscopic
Merck 
14,1336
BRN 
1697939
InChIKey
KGBXLFKZBHKPEV-UHFFFAOYSA-N
CAS DataBase Reference
10043-35-3(CAS DataBase Reference)
NIST Chemistry Reference
B(OH)3(10043-35-3)
EPA Substance Registry System
Orthoboric acid (10043-35-3)
More
Less

Safety Information

Hazard Codes 
Xi,T,Xn
Risk Statements 
36/37/38-60-63-62-61
Safety Statements 
26-36-53-45-37/39-36/37/39-22-24/25-23
WGK Germany 
2
RTECS 
ED4550000
3
TSCA 
Yes
HS Code 
28100090
Hazardous Substances Data
10043-35-3(Hazardous Substances Data)
Toxicity
LD50 orally in rats: 5.14 g/kg (Smyth).

MSDS

More
Less

Orthoboric acid Usage And Synthesis

Description

Boric acid (orthoboric acid) is a weakly acidic hydrate of boric oxide with mild antiseptic, antifungal, and antiviral properties.
Boric acid can be used to treat yeast infections and acne, for eyewash by treating any bacterial infection and soothing inflamed eyes, and as a cleanser, deodorizer, stain remover, disinfectant and mold killer. Boric acid can be used as a pesticide to control a variety of pests, as a fungicide for citrus, and as an herbicide along rights-of-way. Boric acid can be used for the manufacture of textile fiberglass, household glass products and the glass used in LCD displays, to reinforce plastics in various products (boats, computer circuit boards and pipes), as a flame retardant, and as a pH buffer agent in plating.

References

[1] http://npic.orst.edu
[2] https://www.polyu.edu.hk
[3] Zenat A. Nagieb, Mona A. Nassar, Magda G. El-Meligy (2011) Effect of Addition of Boric Acid and Borax on Fire-Retardant and Mechanical Properties of Urea Formaldehyde Saw Dust Composites, International Journal of Carbonhydrate Chemistry, 2011, 146763
[4] http://www.boricacid.net.au/uses-of-boric-acid

Chemical Properties

White powder or granules and odorless. It is incompatible with potassium, acetic anhydride, alkalis, carbonates, and hydroxides. Boric acid has uses in the production of textile fiberglass, flat panel displays, and eye drops. Boric acid is recognized for its application as a pH buffer and as a moderate antiseptic agent and emulsifier.

Chemical Properties

Boric acid is a white, amorphous powder or colorless, crystalline solid.

Chemical Properties

Boric acid occurs as a hygroscopic, white crystalline powder, colorless shiny plates, or white crystals.

Physical properties

Colorless, transparent triclinic crystal or white granule or powder; density 1.435 g/cm3; melts at 171°C under normal heating; however, slow heating causes loss of water; sparingly soluble in cold water (4.7% at 20°C); pH of 0.1M solution 5.1; readily dissolves in hot water (19.1% at 80°C and 27.5% at 100°C); also soluble in lower alcohols and moderately soluble in pyridine.

Uses

For weatherproofing wood and fireproofing fabrics; as a preservative; manufacture of cements, crockery, porcelain, enamels, glass, borates, leather, carpets, hats, soaps, artificial gems; in nickeling baths; cosmetics; printing and dyeing, painting; photography; for impregnating wicks; electric condensers; hardening steel. Also used as insecticide for cockroaches and black carpet beetles.

Preparation

Boric acid is produced from borax, colemanite, or other inorganic borates by reaction with sulfuric acid or hydrochloric acid, and cooling the solution to proper temperature:
Na2B4O7 ? 10Η2Ο + H2SO4 → 4H3BO3 + Na2SO4 + 5H2O
It also may be prepared by extraction of weak borax brine with a kerosene solution of an aromatic diol, such as 2-ethyl-1,3-hexanediol or 3-chloro- 2-hydroxy-5-(1,1,3,3-tetramethylbutyl)benzyl alcohol. The diol-borate chelate formed separates into a kerosene phase. Treatment with sulfuric acid yields boric acid which partitions into aqueous phase and is purified by recrystallization.

Production Methods

Boric acid occurs naturally as the mineral sassolite. However, the majority of boric acid is produced by reacting inorganic borates with sulfuric acid in an aqueous medium. Sodium borate and partially refined calcium borate (colemanite) are the principal raw materials. When boric acid is made from colemanite, the fineground ore is vigorously stirred with mother liquor and sulfuric acid at about 908℃. The by-product calcium sulfate is removed by filtration, and the boric acid is crystallized by cooling the filtrate.

brand name

Alpagelle;Anojel;Anugard;Anojel;Anugard;Anusol hc;Anusol hc;Berlicetin;Betadrin;Berlicetin;Betadrin;Bluboro;Boroformal;Bluboro;Boroformal;Borogal;Borogal;Borsyre viskos;Cacimag;Borsyre viskos;Cacimag;Caclcifor;Caclcifor;Calcamyl-24;Calcibenzamin;Calcamyl-24;Calcibenzamin;Camilca;Camilca;Chibro;Coneolent;Chibro;Coneolent;Cutaden;Cutaden;Dissol;Ear-dry;Dissol;Ear-dry;Egosol-bs;Egosol-bs;Evercil;Fermakzem;Evercil;Fermakzem;Flex-care;Flex-care;Glaucadrine;Glucocalcium;Glaucadrine;Glucocalcium;Kalopsisi;Kerapos;Kalopsisi;Kerapos;Kodomo smarin;Kodomo smarin;Komex;Lindemil;Komex;Lindemil;Macaldex;Macaldex;Mentol sedans sulfamidad;Neo-smarin dia;Mentol sedans sulfamidad;Neo-smarin dia;Neo-vagipurin;Neo-vagipurin;Normol;O-biol;Normol;O-biol;Oestro-gynedron;Oestro-gynedron;Ophtalmin;Otocaina;Ophtalmin;Otocaina;Pedoz;Pedoz;Phoscanol;Phoscanol;Poly-gynedron;Preferal;Poly-gynedron;Preferal;Proculin;Proculin;Rhinophenazol;Saddle mate;Rhinophenazol;Saddle mate;Swim-ear;Swim-ear;Swim-eye;Swim-eye;Timazincum;Timazincum;Tipolin;Tricho-gynedron;Tipolin;Tricho-gynedron;Unisol;Unisol;Vetacalin-m;Alpagelle;Vetacalin-m.

World Health Organization (WHO)

Boric acid and some borates were formerly extensively used as disinfectants and antiinflammatory agents. By the late 1960s an association between the death of many infants and application of high concentrations of boric acid contained in topical preparations used in the treatment of napkin rash had been established. This led to the restriction of the use of boric acid in pharmaceutical preparations by many regulatory authorities. In some countries it is now permitted only as an ingredient in ophthalmological preparations.

Hazard

Toxic via ingestion. Use only weak solu- tions. Irritant to skin in dry form.

Pharmaceutical Applications

Boric acid is used as an antimicrobial preservative in eye drops, cosmetic products, ointments, and topical creams. It is also used as an antimicrobial preservative in foods.
Boric acid and borate have good buffering capacity and are used to control pH; they have been used for this purpose in external preparations such as eye drops.
Boric acid has also been used therapeutically in the form of suppositories to treat yeast infections. In dilute concentrations it is used as a mild antiseptic, with weak bacteriostatic and fungistatic properties, although it has generally been superseded by more effective and less toxic disinfectants.

Safety

Boric acid is a weak bacteriostatic and antimicrobial agent, and has been used in topical preparations such as eye lotions, mouthwashes and gargles. It has also been used in US- and Japanese-approved intravenous products. Solutions of boric acid were formerly used to wash out body cavities, and as applications to wounds and ulcers, although the use of boric acid for these purposes is now regarded as inadvisable owing to the possibility of absorption. Boric acid is not used internally owing to its toxicity. It is poisonous by ingestion and moderately toxic by skin contact. Experimentally it has proved to be toxic by inhalation and subcutaneous routes, and moderately toxic by intraperitoneal and intravenous routes.
Boric acid is absorbed from the gastrointestinal tract and from damaged skin, wounds, and mucous membranes, although it does not readily permeate intact skin. The main symptoms of boric acid poisoning are abdominal pain, diarrhea, erythematous rash involving both skin and mucous membrane, and vomiting. These symptoms may be followed by desquamation, and stimulation or depression of the central nervous system. Convulsions, hyperpyrexia, and renal tubular damage have been known to occur.
Death has occurred from ingestion of less than 5 g in young children, and of 5–20 g in adults. Fatalities have occurred most frequently in young children after the accidental ingestion of solutions of boric acid, or after the application of boric acid powder to abraded skin.
The permissible exposure limit (PEL) of boric acid is 15 mg/m3 total dust, and 5 mg/m3 respirable fraction for nuisance dusts.
LdLo (man, oral): 429 mg/kg
LdLo (woman, oral): 200 mg/kg
LdLo (infant, oral): 934 mg/kg
LdLo (man, skin): 2.43 g/kg
LdLo (infant, skin): 1.20 g/kg
LD50 (mouse, oral): 3.45 g/kg
LD50 (mouse, IV): 1.24 g/kg
LD50 (mouse, SC): 1.74 g/kg
LD50 (rat, oral): 2.660 g/kg
LD50 (rat, IV): 1.33 g/kg
LD50 (rat, SC): 1.4 g/kg

Potential Exposure

Boric acid is a fireproofing agent for wood; a preservative, and an antiseptic. It is used in the manufacture of glass, pottery, enamels, glazes, cosmetics, cements, porcelain, borates, leather, carpets, hats, soaps; artificial gems; in tanning leather; printing, dyeing, painting, and photography.

storage

Boric acid is hygroscopic and should therefore be stored in an airtight, sealed container. The container must be labeled ‘Not for Internal Use’.

Shipping

UN 3077 Environmentally hazardous substances, solid, n.o.s., Hazard class: 9; Labels: 9—Miscellaneous hazardous material, Technical Name Required.

Purification Methods

Crystallise the acid three times from H2O (3mL/g) between 100o and 0o, after filtering through sintered glass.Dry it to constant weight over metaboric acid in a desiccator. It is steam volatile. After two recrystallisations of ACS grade. it had Ag at 0.2 ppm. Its solubility (%) in H2O is 2.66 at 0o, 4.0 at 12o and 24 at 80o. At 100o it loses H2O to form metaboric acid (HBO2). When it is heated to redness or slowly to 200o, or over P2O5 in vacuo, it dehydrates to boric anhydride (B2O3) [1303-82-6] to give a white hard glass or crystals with m ~294o.The glass softens on heating and liquefies at red heat. It is an astringent, a fungicide and an antibacterial. [McCulloch J Am Chem Soc 59 2650 1937, Kelly J Am Chem Soc 63 1137 1941, Taylor & Cole J Chem Soc 70 1926, Conti J Soc Chem Ind 44 343T 1925.]

Incompatibilities

Boric acid decomposes in heat above 100 C, forming boric anhydride and water. Boric acid is hygroscopic; it will absorb moisture from the air. Boric acid aqueous solution is a weak acid; incompatible with strong reducing agents including alkali metals and metal hydrides (may generate explosive hydrogen gas); acetic anhydride, alkali carbonates, and hydroxides. Violent reaction with powdered potassium metal, especially if impacted. Attacks iron in the presence of moisture.

Incompatibilities

Boric acid is incompatible with water, strong bases and alkali metals. It reacts violently with potassium and acid anhydrides. It also forms a complex with glycerin, which is a stronger acid than boric acid.

Waste Disposal

Boric acids may be recovered from organic process wastes as an alternative to disposal.

Regulatory Status

Accepted for use as a food additive in Europe. Included in the FDA Inactive Ingredients Database (IV injections; ophthalmic preparations; (auricular) otic solutions; topical preparations). Reported in the EPA TSCA Inventory. In the UK, the use of boric acid in cosmetics and toiletries is restricted. Included in the Canadian List of Acceptable Non-medicinal Ingredients.

More
Less

Orthoboric acid SupplierMore

Shanghai Aladdin Bio-Chem Technology Co.,LTD Gold
Tel:
021-20337333-801
Email:
market@aladdin-e.com
VWR(Shanghai) Co., Ltd Gold
Tel:
400-821-8006
Email:
info_china@vwr.com
Aikon International Limited Gold
Tel:
Email:
lwan@aikonchem.com
J & K SCIENTIFIC LTD.
Tel:
010-82848833- ;010-82848833-
Email:
jkinfo@jkchemical.com;market6@jkchemical.com
Meryer (Shanghai) Chemical Technology Co., Ltd.
Tel:
21-61259100-
Email:
sh@meryer.com
Basic information Description References Safety Related Supplier