ChemicalBook >  Product Catalog >  Analytical Chemistry >  Standard >  Pharmaceutical Impurity Reference Standards >  2-Pyrrolidinone

2-Pyrrolidinone

Basic information Description References Safety Related Supplier

2-Pyrrolidinone Basic information

Product Name:
2-Pyrrolidinone
CAS:
616-45-5
MF:
C4H7NO
MW:
85.1
EINECS:
210-483-1
Mol File:
616-45-5.mol
More
Less

2-Pyrrolidinone Chemical Properties

Melting point:
23-25 °C(lit.)
Boiling point:
245 °C(lit.)
Density 
1.12 g/mL at 25 °C(lit.)
vapor density 
2.9 (vs air)
vapor pressure 
0.04 hPa (20 °C)
FEMA 
4829 | 2-PYRROLIDONE
refractive index 
n20/D 1.487(lit.)
Flash point:
>230 °F
storage temp. 
2-8°C
solubility 
H2O: miscible (completely)
pka
16.62±0.20(Predicted)
form 
Liquid or Low Melting Mass
color 
Clear colorless to pale yellow
PH
9-11 (100g/l, H2O, 20℃)
explosive limit
1.8-16.6%(V)
Water Solubility 
miscible
Sensitive 
Hygroscopic
Merck 
14,8016
BRN 
105241
InChIKey
HNJBEVLQSNELDL-UHFFFAOYSA-N
CAS DataBase Reference
616-45-5(CAS DataBase Reference)
NIST Chemistry Reference
2-Pyrrolidinone(616-45-5)
EPA Substance Registry System
2-Pyrrolidinone (616-45-5)
More
Less

Safety Information

Risk Statements 
22
Safety Statements 
24/25
RIDADR 
2810
WGK Germany 
1
RTECS 
UY5715000
Autoignition Temperature
395 °C
TSCA 
Yes
HazardClass 
6.1(b)
PackingGroup 
III
HS Code 
29339980
Hazardous Substances Data
616-45-5(Hazardous Substances Data)
Toxicity
LD50 orally in Rabbit: > 3200 mg/kg

MSDS

More
Less

2-Pyrrolidinone Usage And Synthesis

Description

2-pyrrolidone carboxylic acid, also known as pyroglutamic acid, is a derivative of the glutamine and glutamate. It is contained in many kinds of proteins including bacteriorhodopsin. It is a nonessential nutrient which can be normally generated during the glutathione cycle process inside the human body. It is also contained in fruits and vegetables. Pyroglutamic acid has many physiological functions and healthy effects. Its L-form can increase the activity off neurotransmitter acetylcholine and can be used in the production of the neurotransmitters gramma-aminobutyric acid (GABA) as well as glycine. Based on this, L-pyroglutamic acid is beneficial to brain function, being capable of supporting memory and learning as well as alleviating anxiety. In addition, its sodium-form product (sodium pyroglutamate), as a humectant, can be used for dry skin and hair products.

References

http://www.xtend-life.com/information/ingredients/l-pyroglutamic_acid
https://en.wikipedia.org/wiki/Pyroglutamic_acid

Chemical Properties

Clear colorless liquid or low melting solid

Chemical Properties

2-Pyrrolidone undergoes the reactions of a typical lactam, e.g. ring opening, attack on the carbonyl group, and replacement of hydrogens alpha to the carbonyl group. Strong acids and bases catalyze the hydrolysis of 2-pyrrolidone to 4-aminobutanoic acid (GABA). The hydrogen atom on the nitrogen atom is easily replaced by alkylation reactions with alkyl halide or sulfates, or reaction with acid anhydrides, acyl halides, ethylene oxide, and styrene. Condensation reactions with secondary amines and alcohols, and O-alkylation reactions occur at the carbonyl group. In the presence of anionic catalyst systems, 2-pyrrolidone is polymerized to polypyrrolidone, nylon-4 (Hort and Anderson 1978).

Chemical Properties

Pyrrolidone occurs as a colorless or slightly grayish liquid, as white or almost white crystals, or colorless crystal needles. It has a characteristic odor.

Uses

2-Pyrrolidinone is a widely used organic polar solvent for various applications. 2-Pyrrolidinone is also an intermediate in the manufacture of polymers.

Definition

ChEBI: The simplest member of the class of pyrrolidin-2-ones, consisting of pyrrolidine in which the hydrogens at position 2 are replaced by an oxo group. The lactam arising by the formal intramolecular condensation of the amino and carboxy groups of gamm -aminobutyric acid (GABA).

Production Methods

The synthesis of 2-pyrrolidone was first reported in 1889 as the product of dehydration of 4-aminobutanoic acid. It is produced commercially by condensation of butyrolactone with ammonia, a method first described in 1936. Other synthetic routes include carbon monoxide insertion into allylamine, hydrolytic hydrogenation of succinonitrile, and hydrogenation of ammoniacal solutions of maleic and succinnic acids (Hort and Anderson 1978).

Production Methods

Pyrrolidone is prepared from butyrolactone by a Reppe process, in which acetylene is reacted with formaldehyde.

Health Hazard

Exposure to 2-pyrrolidone produces irritation to the eyes, mucous membranes, and skin. Although reported to be a skin sensitizer in animal tests, there is no indication that 2-pyrrolidone is a skin sensitizer in human exposures (Anon 1975). 2-Pyrrolidone has been reported to enhance the permeability of human skin for methanol, but reduced the permeability for octanol (Southwell et al 1983).

Pharmaceutical Applications

Pyrrolidone and N-methylpyrrolidone are mainly used as solvents in veterinary injections. Pyrrolidone has been shown to be a better solubilizer than glycerin, propylene glycol, or ethanol. They have also been suggested for use in human pharmaceutical formulations as solvents in parenteral, oral, and topical applications. In topical applications, pyrrolidones appear to be effective penetration enhancers. Pyrrolidones have also been investigated for their application in controlled-release depot formulations.

Industrial uses

2-Pyrrolidone is used as an intermediate for synthesis of l-vinyl-2-pyrrolidone and various TV-methylol derivatives used as textile-finishing agents; as a solvent for various polymers, chlordane and DDT, d-sorbitol, glycerin, and sugars; and as a decolorizing agent for kerosene, fatty oils, and rosins. N-methyl-2-pyrrolidone and 2-pyrrolidone are utilized in petroleum refining to selectively extract aromatics from paraffinic hydrocarbons. 2-Pyrrolidone is used as a plasticizer and coalescing agent for acrylic latices and acrylic/styrene copolymers in emulsion coatings, i.e. floor waxes. A linear high molecular weight polyamide polymer of 2-pyrrolidone, nylon-4, is used as a textile fiber, injection molding compound, and film-forming polymer (Anon. 1975; Hort and Anderson 1978).

Safety

Pyrrolidones are mainly used in veterinary injections and have also been suggested for use in human oral, topical, and parenteral pharmaceutical formulations. In mammalian species, pyrrolidones are biotransformed to polar metabolites that are excreted via the urine. Pyrrolidone is mildly toxic by ingestion and subcutaneous routes; mutagenicity data have been reported.
LD50 (guinea pig, oral): 6.5 g/kg
LD50 (rat, oral): 6.5 g/kg

Metabolism

A metabolite of 2-pyrrolidone, 4-aminobutanoic acid has been identified in animals (Lundgren et al 1980). 2-Pyrrolidone has been reported to be an endogenous constituent in the brains of mice (Callery et al 1978) and bovine (Mori et al 1975). The aliphatic polyamine putrescine has been demonstrated to be metabolized to 2-pyrrolidone in rat liver slices (Lundgren and Hankins 1978; Lundgren et al 1985) and to lesser extent by slices of spleen and lung, but not in tissue slices from kidney, brain, heart, or rear leg muscle (Lundgren and Hankins 1978). The metabolism of putrescine is catalyzed by the microsomal enzyme diamine oxidase (EC 1.4.3.6) to 4-aminobutyraldehyde, which is subsequently oxidized to the neurotransmitter 4-aminobutanoic acid (4-aminobutyric acid, GAB A) or is cyclized to delta1-pyrroline (Seiler 1980; Lundgren et al 1980; Callery et al 1980), which is in turn oxidized to 5-hydroxy-2-pyrrolidone (Lundgren and Fales 1980). There is evidence that 5-hydroxy-2-pyrrolidone is further metabolized to succinimide, malimide, 2- and 3-hydroxysuccinamic acids, maleamic acid, and carbon dioxide (Bandle et al 1984). An enzyme system residing in the soluble fraction of rabbit liver catalyzes the conversion of delta'-pyrroline to ?-aminobutyric acid and its lactam, 2-pyrrolidone (Callery et al 1982). 2-Pyrrolidone has been identified as a urinary metabolite of N-nitrosopyrrolidine (Cottrell et al 1980) and the drug methadone (Kreek 1980).

storage

Pyrrolidone is chemically stable and, if it is kept in unopened original containers, the shelf-life is approximately one year. Pyrrolidone should be stored in a well-closed container protected from light and oxidation, at temperatures below 20°C.

Incompatibilities

Pyrrolidone is incompatible with oxidizing agents and strong acids.

More
Less

2-PyrrolidinoneSupplierMore

Shandong Ono Chemical Co., Ltd. Gold
Tel:
0539-6362799(To 20)
Email:
861669111@qq.com
Shanghai Weiken Material Technology Co., Ltd. Gold
Tel:
13818175442
Email:
ceciliawcc@hotmail.com
Hefei TNJ Chemical Industry Co.,Ltd. Gold
Tel:
551-65418695-
Email:
info@tnjchem.com
Creasyn Finechem(Tianjin) Co., Ltd.
Tel:
022-83945878-
Email:
export@creasyn.com
Tianjin Zhongxin Chemtech Co., Ltd.
Tel:
86(0)22-66880623
Email:
sales@tjzxchem.com
Basic information Description References Safety Related Supplier